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INTRODUCTION 

Systematic genome mapping and sequencing projects are generating resources that will 
permanently change the practice of molecular biology. To maximise their effect, we have to 
make the information available to the scientific community in as useful a form as possible. It 
has been said that the sheer quantity of genomic information that we are just now beginning to 
gather will cause problems for any database system that must store it. That is not in itself 
strictly true; in fact the current total of genome mapping and sequence data, for all organisms 
combined, would sit comfortably in a one gigabyte disk, which is small for a workstation, and 
even conceivable for a PC. Furthermore, although the amount of genome data being collected 
is undergoing exponential growth, so is the capacity of computer storage systems, with an even 
shorter doubling time, so the issue of raw storage capacity is becoming progressively easier. 

However, in another sense, the fear of data overload has some justification. This is 
because the issue is not just one of simple storage, but of integrating the new systematic data 
with all our accumulated experimental knowledge from classical and molecular genetics, so as 
to be able to select what is relevant for each scientific question. Until recently, with the results 
disseminated by standard scientific publication and discussion, this process of integration has 
taken place in the minds of the researchers. Even if all details could not be followed, the 
salient facts involved with some specialised function could be managed. It is this storage 
medium, the human brain, that is incapable of handling all the genomic data, not the computer. 

Clearly what is required is a database system that, in addition to storing the results of 
large scale sequencing and mapping projects, allows all sorts of experimental genetic data to 
be maintained and linked to the maps and sequences in as flexible a way as possible. Since this 
is a new type of system, it seems very desirable to have a database whose structure can evolve 
as experience is gained. However this is in general very difficult with existing database 
systems, both relational, such as Sybase and Oracle, and object-oriented, such as Object Store. 

We were faced with these issues three years ago, when starting a pilot project for 
obtaining the complete genomic sequence of the nematode C. elegans. There were dual needs: 
first for a system in which to maintain data for internal purposes, and second for one in which 
to make it public. We wanted to build on previous experience gained while building the 
physical clone map for C. elegans, which had been done using the program CONTIG9 An 
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adapted form of this program, called PMAP, was made publicly available to the C. elegans 
research community, together with regularly updated copies of the in house data. This rapid 
and complete access to the map, even in incomplete form, proved to be extremely popular and 
successful, soon becoming a crucial resource when cloning worm genes. It therefore seemed 
sensible to extend the same approach, and develop a single database to hold sequence, physical 
and genetic map, and references, that we could use in house, and that we could distribute in 
read-only form freely within the worm community. 

This led directly to the database program ACEDB, which is described in this chapter. 
Rather than being limited to the specific data that we could envisage when we started, we 
decided to write a general database management system that would allow easy and 
frequent extension and adaptation of the database schema as the project developed. For 
this reason, it has been comparatively easy to adapt ACEDB to be used by other genome 
projects working with other organisms. At the time of writing (March, 1993) there are 
public databases for the model plant Arabidopsis thaliana, and the mycobacteria M. leprae 
and M. tuberculosis, which are the pathogens for leprosy and tuberculosis. Several other 
databases for public distribution are under development. ACEDB is also being used 
internally at several sites, for example for storage of physical mapping results from human 
and Drosophila projects. Finally, it is being used as one of the core pieces of software in 
the IGD (Integrated Genomic Datatape) project (European Data Recource for Human 
Genom Research, Heidelberg), which plans to bring together all public human genome 
data in an integrated genome database. ACEDB is both being used as the primary graphics 
front end of IGD, and as one of the alternative back-end data storage systems. 

OVERVIEW OF FEATURES 

In this section we will give a brief overview of ACEDB as a biological user sees it. 
Overall the program is very graphical. It works using a windowing system, and presents 
data in different types of window according to the different types of map. The maps and 
other windows are linked in a hypertext fashion, so that clicking on an object will display 
further information about that object in the appropriate sort of window. For example, 
clicking on a chromosome displays its genetic map; clicking on a gene in the genetic map 
displays text information about the gene's phenotype, references etc; clicking on a clone 
displays the physical map around it; clicking on a sequence starts the sequence display 
facility. 

The internal structures of the system, which are more general, and which contain 
some of the more novel features, will be described in later sections. There are interactive 
tools for many of these more general features available to the user as part of the graphical 
interface, but discussion of these will be delayed until later. In this section we will just 
briefly describe the windows used to display the different classes of object in the database. 

MAIN CONTROL WINDOW 

There is one window that is always present while running ACEDB: the main control 
window. This contains a list of the different available classes of objects, such as Clones, 
Sequences, Genes, Papers, Authors etc. To use the program in its most simple fashion the 
user selects a class with the mouse and types the name of the object in the yellow text 
entry box, then hits the return key, at which point the object will be displayed in another 
window. If a name template is given using wildcard characters (such as then a list of 
all possible matching names is given, from which the user can select. There is also a menu 
accessible with the right mouse button that provides access to more complex features, 
such as the query system discussed later. 
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GENETIC MAP 

The genetic map display gives access to genes and rearrangements on the scale of a 
chromosome. In the C. elegans map the units used are centimorgans. The map is displayed 
vertically, as are many ACEDB maps. On the left side, acting like an annotated scrollbar, 
is an image of the whole chromosome with a green cursor region indicating the currently 
displayed region. This area is zoomed up to fill the rest of the display, which consists of 
various zones, including from left to right: space for chromosomal rearrangements 
(deficiencies and duplications), an indication of physically mapped regions, a scale bar, 
and the genes themselves. The display can be easily scrolled up and down, and zoomed in 
and out using either the scrollbar cursor, or buttons that can be pressed with with the 
mouse. There are also buttons to allow genetic mapping data to be displayed graphically. 
Recently we have extended the mapping data package to also allow calculations on 
mapping positions to be made from the map data. 

If the user double clicks on any item a new window pops up with text information 
about the object. This text information is layed out hierarchically, in what is called a tree 
structure. The section below on "Organisation of data'' describes further this tree structure, 
which in fact is the primary way of storing information in ACEDB. The maps are merely 
derived from the data stored in tree form with each object. 

PHYSICAL MAP 

This is the primary display for looking at the positions of clones within clone contigs. 
It is (currently) a horizontal map, based very much on the map display of CONTIG9 
Again at the bottom is an annotated scrollbar showing a wider region of the contig. At the 
top are a number of sections showing different types of clone, i.e. probes, YACS, cosmids. 
Under these are spaces for genes that have been attached to the map by localising them 
onto a clone, and remarks, which can be freely attached to any clone. Also in this region is 
a green horizontal band linking back to the genetic map. Again, whenever an item is 
selected, all the related items are also lit up; e.g. selecting a gene might show the clone 
that contains it, and any remarks attached to the clone. If the item is double clicked, then 
text information about the item is displayed. 

HYBRIDISATION GRID 

This window provides access to one of the forms of raw data used in building the 
physical map, which is hybridisation of probes to a grid of clones arrayed on nylon filter. 
The grid is displayed schematically, and the hybridisation pattern can be entered by 
clicking on the appropriate squares. Once this is done, the inferred loci on the physical 
map are determined automatically. There are also facilities for comparing one pattern with 
another, and for displaying the results of both real and hypothetical pooled probings. This 
tool was used to position 1100 nematode cDNA's on the C. elegans physical map, and is 
also used by a human mapping project for data acquisition. 

DNA SEQUENCE 

The sequence display function in ACEDB is particularly flexible. As well as being able to 
display the actual nucleotide sequence and protein translations of it in all frames, there are a 
wide range of different schematic display options available. These allow features to be shown 
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Figure 2: Physical map window and hybridisation grid window. 
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with at many different scales, with simplified results on a megabase scale at one extreme, and 
details of short tandem repeats at the other. Selection of exactly which options are shown is 
controlled by a separate menu. 
As well as displaying annotations and precalculated information, the sequence window supports 
several types of calculation. In particular there are a range of facilities derived the Genefinder 
program (Green and Hillier, personal communication) for predicting gene structures in genomic 
DNA sequence based on likelihood predictions of splice sites and codon usage. These are in fact 
used to annotate the nematode genomic DNA sequence before submission to EMBL. There are also 
restriction site detection tools, and tools for extracting subsequences and translations of predicted 
genes. 

ORGANISATION OF DATA 

Definition of the schema 

ACEDB is an object-oriented system. This type of organisation of data is much more intuitive than 
one based on relational tables. Because of this it permits more direct input from working biologists 
on the construction and refinement of the schema, or data structure. 
Each object is represented by a unique identifier, its name, which is followed by an ensemble of 
attributes organised into a tree. The nodes at branchpoints of the tree are all named. The branches 
typically terminate in pointers to other objects, or data, which are numerical values, character 
strings. A bare branch ending just in the named branchpoint can be used to indicate presence of a 
binary property. There is also the possibility of constructed subobjects, similar to expanding a leaf 
node in place recursively into a full object with its own branches, rather than maintaining merely a 
pointer to an external object. Arbitrary text comments can be attached freely at any point in the tree. 
The objects are allocated to classes. Each class has a model, specifying the maximal extension of 
the branches, and the types of data or classes of pointer permitted at each position. Individual 
objects, which are instances of the class, in general only have a part of the branching pattern 
permitted by the model. This approach gives a triple advantage: 

a) Poorly studied objects, which are by far the most numerous, take little space on disk and in 
memory, which strongly increases the speed and efficiency of the program. 

b) If one wants to extend the schema, which we do frequently, all that needs to be done is to 
add another branch to the model. Of course none of the existing objects contain this branch, 
but they remain valid because there is no requirement for objects to contain any particular 
branch of the model. 

c) The ability to add personal comments that are ignored by searching algorithms allows 
flexible annotation of data sources, reservations etc. without affecting internal search 
procedures. 

Here is a part of the definition of the class Gene, and an example of a gene: 

?Gene Reference-Allele ?Allele 
Molecular-information Clone ?Clone XREF Gene 

Map Physical pMap UNIQUE XREF Gene UNIQUE Int 
Sequence ?Sequence XREF Gene 

Aut opo s 
Genetic gMap ?Chromosome XREF Gene UNIQUE Float UNIQUE Float 
Mapping-data 

Location ?Laboratory #Lab-Location 
?Lab-Location Freezer Text 

Text L qui dN 2 
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ced-4 Reference-Allele 
Molecular-information Clone 

Map Genetic -2.7 

Location Cambridge Freezer A6 

Sequence ?Sequence XREF Gene 

Mapping-data "ced-4 

Note that each object belongs to just one class. We have deliberately chosen to avoid 
multiple inheritance. This concept is at the same time notoriously difficult to implement 
efficiently and very difficult to use, because the inheritance graph easily becomes encumbered 
with potential conflicts amongst super-classes. 

Our alternative to multiple inheritance is to restrict the number of classes, but allow a 
wider variety of objects within a class. In this system, it is possible that two objects in the same 
class have few or no branches in common. For example consider two genes, the first studied by 
classical genetics and uncloned, the second cloned by similarity to a protein in another 
organism. These objects could be considered as archetypes of two subclasses of the class gene. 
But such simple cases are relatively rare, a third gene could have data for some fields of one 
type, and some of the other, and one is rapidly led to a combinatorial explosion in the number 
of classes. Our approach lets us capture without difficulty all the intermediate cases, and we 
only need around fifty classes to hold nearly a hundred thousand heterogeneous objects. 

As well as the classes of tree objects described above, also denoted type B classes, we 
have type A classes, which contain general arrays of data, and which allow more rigid but 
more efficient storage of data such as DNA sequences. 

The schema itself is stored in objects within the database, allowing a simplified startup 
procedure and dynamic editing of some features. 

Ace files: an ascii edit language 

Although data are stored internally in a binary form of the trees discussed above, they are 
normally entered via simple ascii files known as ace files. 

Each paragraph in these files corresponds to one object, and must be separated the 
next by one or more blank lines. The first line indicates the class and name of the object to be 
created or edited. Following lines start with the name of a branch node, followed by numerical 
or text data, or names of other objects to be pointed to. They are interpreted according to the 
model. Keywords such as -D or -R specify actions to be taken, with the default action being to 
add the data into the database. As in indicates a comment in the file. 

Example: 

First let us define a sequence: 
Sequence ACT3 
Title elegans actin gene 
Library EMBL 

next the corresponding DNA (A class with special reader) 
DNA ACT3 
aagagagacatcctcccgctcccttcccacacccacttgctcttttctat 
tgaccacacattatgaagataaccatgttactaatcaaattcgtgttctt 
ttccaatttctttttc 

here we change the name (if it exists) 
-R Sequence R for "rename" 

here we change one of the authors of the paper 
Paper 
-D Author deletion of Kimble 
Author "Ahringer addition of Ahringer 
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It is specifically because the objects have a public unique ascii identifier, the doublet 
that these edit commands are well-defined and can refer to precise objects. If the 

object is not known yet, it is created, else it is modified. If a delete or rename operation finds 
nothing to delete or rename it moves on silently. If an instruction makes no sense according to 
the model, for example by referring to an unknown branch point, the user is warned and the 
paragraph is skipped. Together these properties also allow repeated reading of the same file 
without changing the database contents, and transfer of information between databases that 
may not match exactly, something which is very hard with traditional database systems. Indeed 
they even allow transfer of commonly meaningful data between systems whose schemas differ. 

As well as reading in data, we can also export a set of objects in ACE file form. An 
external program, acediff, takes as input two such ace files, and generates a third that would 
have the effect of transforming a database containing data as in the first file into one containing 
data as in the second file. This program can be used to generate update files for remote copies 
of a central database, and in fact this is the procedure we use to distribute the nematode 
genomic database. There are also facilities within ACEDB for certain types of specialised data 
output, such as DNA in FASTA format. 

THE DATABASE KERNEL 

We wanted ACEDB to be portable and efficient. The system is therefore built using the 
standards of C, Unix, and PostScript. Because we ended up defining a new type of 
database system we had to write our own database management system. We also wrote our 
own graphical library on top of X, which can be reimplemented using other underlying 
graphical systems Apple Toolbox), and a number of macro-based extensions to C that 
seemed useful to us. ACEDB is therefore not tied to any particular machine, nor operating 
system, nor even (after a little work) windowing system. It contains an internal help system, 
and a crash recovery system (when possible). Some of these functions are described in this 
technical section. 

Disk storage 

The conceptual unit of transfer between disk and memory is the object. Since the objects 
are trees or arrays of arbitrary size, we wrote a relatively complex module to pack them into 
and out of fixed size blocks (one or two kilobytes). The many small objects are brought 
together in groups that each fill one block; large ones are split over several blocks. The system 
is speeded up by two levels of internal cache, the first acting on the fixed size blocks, the 
second on developed trees. These both work as last out queues. 

Since the class of an object is known at all levels, it is easy to selectively optimise the 
storage of certain classes, as we do for example with DNA. 

Within any particular session, all modified objects are rewritten to new disk locations, 
which allows us to store multiple versions of an object, and recover from crashes by going 
back to the last verified save state of the database. 

Indexing system 

Each object is identified externally by the ASCII doublet Internally it is 
represented by a unique 32 bit key, 8 bits being used for the class, and 24 for the location 
within the class. Linking these are hash tables that map the known names of each class to keys. 
For each key there are then a set of indices containing the disk address of the object, cache 
addresses if it is in memory, flags indicating its edit state and other properties, a pointer back 
to its name, etc. There are separate index and hash tables for each class. These are loaded into 
memory as needed, and take up about 30 bytes per object. 
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Only one user at a time is permitted write access. The set of changes made until write 
access is given up constitutes a session. When a session is saved, first the changed objects are 
flushed to disk, then the indices and hash tables for any altered classes are written (as type A 
class objects, and hence also to new disk locations). Finally a pointer in the superblock is 
changed to point to the new index information. Once this is done the system will start up with 
the new indices. Any crash before this point will leave the system so it starts up by retrieving 
the old indices, and hence the old objects from before the aborted session. 

Data access library 

All simple access to data within the program uses a subroutine library that allows access 
via the names of terminal branchpoints, rather like with the ace files. There are two steps: the 
first recalls an object from disk given a key, and returns a handle; the second uses this handle 
to recover data. Since any data may be missing, these routines all return boolean value 
indicating success or failure. As an example, to recover the date of a paper, one might write (in 
C code): 

void paperDate (KEY paper) 
{ int year; OBJ obj; 
if ((obj = bsCreate(paper)) && bsGetData(obj ,-Year,&year)) 

bsDestroy(obj) ;} 
printf ("Paper %s was published in year %d\n", name(key), year) ; 

Query language and Keysets 

As well as accessing data via the direct subroutine package, there is a powerful and 
general query language that allows higher level manipulation of sets of objects, which are 
known as keysets. The basic operations in the language are (1)  perform filtering operations on 
a set of objects, either on the basis of their names or the data they contain, and (2) to follow 
pointers to retrieve other objects. These operations can be combined using boolean operations 
into complex query sentences. 

The resulting keysets can be used in in various ways: single items can be looked at 
interactively, the whole set can be a starting point for further queries, it can be dumped out as 
ascii ace file (see above), or it can be saved in the database with a user-specified name. 
Boolean set operations can also be used to combine sets. An important feature is that sets can 
contain objects from many classes. One example of how this is used is via another query 
operation, "text search". This performs a search on all text stored in the database, and returns a 
list of all objects that either have names matching the search string, or contain text that 
matches it. For example a search for might return genes with muscle phenotypes, 
papers with "muscle” in the title, sequences of muscle proteins, etc. 

The query package is available both to the user, via an interactive interface that allows 
saving, recovery and reuse of queries, and to the programmer via a library of subroutines. In 
fact the main control window is implemented by setting up a limited set of straightforward 
queries. 

There is another facility for general data presentation based on the query package, called 
the "Table Maker". This allows the user to construct tables of displayed information in a 
similar way to using a spreadsheet. The difference is that, in the table maker, new columns are 
derived from previous columns by queries, not by calculations. Once again, the instructions for 
defining a table can be built up interactively, and stored in a file once they are correct. 

Textace and the server/client architecture 

All the discussion so far has concerned the graphical version of ACEDB that most users 
see. However there is also a text version of the program, textace, that can be run from the Unix 
command line. This basically contains the kernel with a simple command parsing interface. 
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Although it can be useful for extracting data over a serial line, the main purpose of this version 
is to enable a client/server architecture for ACEDB. 

The way this is done is for the server to contain a full copy of the database, and for the 
client to start with an empty database. When a query is generated by the client, the server 
resolves it and sends the result back to the client as an ace file, which is parsed into the client 
database in the normal fashion. In fact the server is acting in exactly the same fashion as an 
independent textace program, except that it is connected to the client by a pair of sockets, 
rather than by the standard I/O. This type of structure is only possible because ACEDB allows 
meaningful data transfer between non-identical databases, via ace files. The client database can 
either be allowed to accumulate during the session, acting as a local cache, or can be restricted 
so that all calls for data are resolved by passing them back to the server. Of course the former 
can become much more efficient, while susceptible to data becoming stale if it is edited by 
another process. It is clear that when editing data, the objects must be retrieved from the server 
and locked there, rather than updated based on a local copy. 

CONCLUSION 

ACEDB is publicly available by anonymous ftp, both in binary form and as source files. 
There are three primary ftp sites: (1 3 1 .1  1 1.84.1) in England, directory 
pub/acedb; lirmm.lirmm.fr (1 93.49.104.10) in France, directory genome/acedb 
ncbi.nlm.nih.gov (1 30.14.20.1) in the USA, directory repository/acedb. In each case the file 
NOTES gives further instructions on retrieving the program. The data for the current version 
of the C. elegans database is available in the same directories. 

Although we make the source code available (under a licence restricting commercial 
exploitation), and we encourage development of new specific application code, we hope that 
the community of groups using ACEDB can keep to a single database kernel. This can be 
achieved by establishing good contact between groups that are doing development work, and 
folding kernel changes back into the official release version described above. With this policy, 
we believe that ACEDB can continue to support a growing community of genome database 
providers, covering many different genome projects. 
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